

Angewandte

Frustrated Lewis Pairs

DOI: 10.1002/ange.201608968 Deutsche Ausgabe: Internationale Ausgabe: DOI: 10.1002/anie.201608968

A Frustrated and Confused Lewis Pair

Alison C. McQuilken, Quang Minh Dao, Allan Jay P. Cardenas, Jeffery A. Bertke, Stefan Grimme,* and Timothy H. Warren*

Abstract: We report a new class of frustrated Lewis pairs (FLPs) by the hydroboration of bulky isocyanates ^{iPr2}ArNCO $(^{iPr2}Ar = 2,6-iPr_2C_6H_3)$ and $^{Ph2tBu}ArNCO$ $(^{Ph2tBu}Ar = 2,6-Ph_2-4$ $tBuC_6H_2$) with Piers' borane (HB(C_6F_5)₂). While hydroboration of smaller isocyanates such as iPr2ArNCO leads to isocyanate-N/B FLP adducts, hydroboration of the bulkier Ph2tBu ArNCO allows isolation of the substrate-free aminoborane with a short, covalent N-B bond. This confused FLP reversibly binds unsaturated substrates such as isocyanates and isocyanides, suggesting the intermediacy of a "normal" FLP along the reaction pathway, supported by high-level DFT studies and variable-temperature NMR spectroscopy. These results underscore the possibility of FLP behavior in systems that possess no obvious frustrated Lewis acid-base interaction.

When enough steric bulk exists at both a Lewis acid and a Lewis base, the formation of a direct acid-base adduct is precluded leading to a "frustrated" interaction. Such frustrated Lewis pairs (FLPs) undergo cooperative reactivity with a wide variety of external substrates, displaying previously unprecedented metal-free pathways to small molecule capture and activation. The first example of small molecule activation by FLPs,[1] and perhaps the most widely studied, is the heterolytic splitting and activation of $H_{2,1}^{[2-4]}$ which has resulted in the development of metal-free catalytic processes for the hydrogenation of imines, enamines, and silyl enol ethers.^[5-8] FLPs have been developed that incorporate a wide variety of combinations of Lewis acids and bases, but the majority consist of sterically hindered phosphorus-, nitrogen-, and carbene-centered Lewis bases in conjunction with fluorinated aryl borane Lewis acids. [6,9] While the field was launched with phosphine/borane (P/B) based Lewis pairs,[10-12] N/B FLPs with pyridine-, amine-, and iminebased donors in conjunction with electron-deficient boranes also capture and activate CO2, H2, nitriles, aldehydes, and alkynes. [6,13,14] Some N/B FLPs are particularly potent metalfree reductants, capable of (hetero)arene reduction to saturated six-membered cycles^[15] (Figure 1 a, R = Ph) and selective alkyne reduction to *cis* alkenes (Figure 1b). [13] Moreover, N/B FLPs have found application in the metal-free borylation of pyrroles, furans, and thiophenes (Figure 1c)[16] and have recently effected dehydrogenative oxidation of N-protected indolines through borane-induced hydride abstraction with subsequent deprotonation.[17]

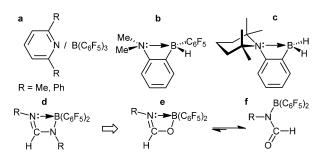


Figure 1. a-d) Selected inter- and intramolecular N/B FLPs e) with targeted isocyanate derived N/B FLP and f) its confused isomer.

Boron amidinates represent a family of intramolecular N/ B FLPs reported by Stephan in 2010.[18] Hydroboration of bulky carbodimides, RN=C=NR, with $HB(C_6F_5)_2$ generates strained four-membered chelates (Figure 1 d) that react with carbon monoxide (CO), carbon dioxide (CO₂), and tertbutylisocyanide ('BuNC). Such N/B FLPs have a tight internal N/B interaction, leading to sluggish reactivity with substrates. These observations motivated us to develop new intramolecular N/B FLPs that would result from hydroboration of isocyanates, ArN=C=O, that feature a direct O-B linkage with a frustrated N-B interaction. We hypothesized that the electron-withdrawing oxygen atom could weaken the donor ability of the N lone pair (but perhaps also increase the Lewis acidity of the B center), modifying the N-B interaction and possibly enhancing overall reactivity (Figure 1e). We herein report the synthesis of a new class of N/B FLPs that possess a "confused" aminoborane binding motif (Figure 1 f) but behave as a typical FLP through facile rearrangement.

Hydroboration of ^{iPr2}ArNCO (^{iPr2}Ar = 2,6-iPr₂C₆H₃) with Piers' borane, [19] HB(C₆F₅)₂ (HBCF), did not result in the desired four-membered cyclized product similar to the boron amidinate chemistry. Instead, addition of iPr2ArNCO to a fluorobenzene solution of HBCF resulted solely in the isocyanate adduct of the desired N/B FLP, iPr2ArN/B-FLP(iPr2ArNCO) (1) (Scheme 1). The structure of

Department of Chemistry, Georgetown University Box 571227, Washington, DC 20057-1227 (USA)

E-mail: thw@georgetown.edu

Q. M. Dao, Prof. Dr. S. Grimme

Mulliken Center for Theoretical Chemistry

Institut für Physikalische Chemie und Theoretische Chemie

Universität Bonn

Beringstraße 4, 53115 Bonn (Deutschland)

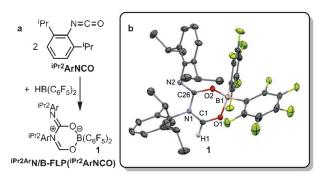
E-mail: grimme@thch.uni-bonn.de

Dr. A. J. P. Cardenas

Department of Chemistry

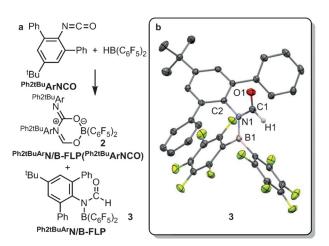
State University of New York at Fredonia

221 Science Center, Fredonia, NY 14064 (USA)


Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under http://dx.doi.org/10. 1002/anie.201608968.

14547

^[*] Dr. A. C. McQuilken, Dr. A. J. P. Cardenas, Dr. J. A. Bertke, Prof. Dr. T. H. Warren



Scheme 1. a) Synthesis of $^{iPr2Ar}N/B$ -FLP($^{iPr2}ArNCO)$ (1). b) X-ray structure of 1.

1 (Scheme 1) features a six-membered ring resulting from formal capture of the isocyanate by the anticipated N/B FLP and resembles that of Stephan's CO_2 adduct. The N1–C26 bond distance (1.4387(12) Å) is expectedly slightly longer than the corresponding N–C bond of the CO_2 adduct (1.402(6) Å) due to sterics on the *N*-aryl ring while the O2–B1 distance (1.4825(15) Å) is quite similar to the corresponding O–B bond of the CO_2 adduct (1.493(5) Å). The iPr2 ArNCO-adduct 1 displays a singlet at δ 7.18 ppm in the h NMR spectrum ([D₆]benzene) corresponding to the formamidate C–H moiety while the PNMR spectrum shows three signals at δ –136.4, –156.0, and –164.4 ppm corresponding to the *ortho-*, *para-*, and *meta-*F atoms, respectively.

With the goal of isolating a monomeric, boron formamidate-based N/B-FLP, we moved to a bulkier substituent at the 2,6-positions of the aryl isocyanate. Addition of HBCF to the especially crowded isocyanate $^{\text{Ph2tBu}}\text{ArNCO}$ ($^{\text{Ph2tBu}}\text{Ar}=2,6-\text{Ph}_2-4-t\text{BuC}_6\text{H}_2$), which possesses a p-tBu and two o-Ph groups on the isocyanate N-aryl ring, resulted in a mixture of two predominant products by NMR spectroscopy (Scheme 2 a). The first species, **2**, exhibits features in the ^1H and ^{19}F NMR spectra similar to those of isocyanate adduct **1**, with a downfield ^1H NMR C-H signal at δ 6.79 ppm and two t-butyl groups at δ 1.20 and 1.12 ppm, as well as equivalent C_6F_5 rings as judged by ^{19}F NMR spectroscopy. A second species, **3**,

Scheme 2. a) Synthesis of confused FLP **3** and its isocyanate adduct 2. b) X-ray structure of confused FLP **3**.

displays a more downfield ^{1}H NMR signal at δ 8.41 ppm, a single *t*-butyl group at δ 1.11 ppm, and two sets of ^{19}F resonances of equal intensity, indicating product **3** possesses two inequivalent C_6F_5 rings.

Careful crystallization of this mixture resulted in the isolation and structural characterization of both major products. While product 2 is confirmed to be the isocyanate adduct Ph2tBuArN/B-FLP(Ph2tBuArNCO) of the bulky isocyanate/FLP pair (see Figure S9 in the Supporting Information), the unsymmetrical product 3 is the unanticipated, rearranged aminoborane isomer of the targeted Ph2tBuArN/B-FLP. The Xray crystal structure of 3 (Scheme 2b) displays an alternative coordination motif for this FLP with a covalent B-N bond (N1-B1 = 1.4124(19) Å) and a free formamide moiety (C1-O1 = 1.2007(17) Å) that conceptually results from hydroboration of the hindered N=C bond of the isocyanate. This B-N bond is typical of borylamides R₂B-NR₂. [20-24] The B-N-C(H)= O atoms essentially lie in one plane (B1-N1-C1-O1 = 170.6°) consistent with a delocalized π system involving the carbonyl C=O double bond in conjugation with the N \rightarrow B π interaction. The IR spectrum displays a band at 1647 cm⁻¹ corresponding to the C=O stretch at a bit lower energy than in unconjugated formamides such as HC(O)NMe2 $(1675 \text{ cm}^{-1}).^{[25]}$ The diastereotopic B-C₆F₅ groups observed by ¹⁹F NMR spectroscopy thus reflect hindered B-N bond rotation due to participation of the N lone pair in this conjugated π system.

While we were surprised at this "confused" isomer of our targeted intramolecular FLP that places the sterically demanding Ph2tBu ArN moiety adjacent to the $B(C_6F_5)_2$ group, DFT calculations identify this experimental structure as the lowest energy isomer (Figure 2). At the PW6B95-D3/def2-

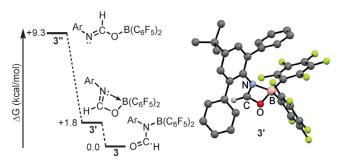


Figure 2. Relative free energies of FLP isomers 3 (confused), 3' (frustrated), and 3" (open) by DFT at 298 K in fluorobenzene.

QZVP (COSMO-RS, fluorobenzene)//PBEh-3c level of theory, [26] this "confused" FLP isomer **3** is predicted to be 1.8 kcal mol⁻¹ lower in free energy in fluorobenzene than the anticipated "frustrated" species **3'** that possesses both O–B and N–B interactions. The O–B and N–B bond distances of the FLP-type isomer **3'** are 1.56 and 1.62 Å, respectively. This N–B bond length in frustrated **3'** is just outside the range of the N–B distances observed in Stephan's N/B boron amidinate FLPs (1.583(3) –1.606(2) Å). [18] On the other hand, the fully "open" isomer **3"** that does not benefit from any N–B interaction is significantly higher in free energy than **3** (+9.3 kcal mol⁻¹).

FLP =
Ph2tBuArN/B-FLP

Ph 3 B(C₆F₅)₂

AdNCO

AdNCO

AdNCO

AdNCO

AdNCO

AdNCO

AdNCO

AdNCO

B(C₆F₅)₂

Ph2tBuArN

B(C₆F₅)₂

Ph2tBuArN

B(C₆F₅)₂

FLP(
$$^{\text{iPr2}}$$
ArNCO)

FLP($^{\text{Me2}}$ ArNC)

AdNCO

AdNCO

AdNCO

FLP($^{\text{Me2}}$ ArNC)

ArMe2

Ph2tBuArN

B(C₆F₅)₂

FLP($^{\text{iPr2}}$ ArNCO)

FLP($^{\text{Me2}}$ ArNC)

AG = -4.8 kcal/mol

AG = 0.0 kcal/mol

AG = -6.8 kcal/mol

Scheme 3. Capture of unsaturated substrates by confused FLP 3 along with DFT-calculated energies at 298 K in fluorobenzene.

Importantly, addition of unsaturated substrates, such as isocyanates, to the rearranged FLP 3 reveals normal FLP reactivity to give the expected substrate adducts (Scheme 3). Addition of iPr2ArNCO or 1-adamantyl isocyanate (AdNCO) to 3 in fluorobenzene results in rapid conversion to the FLP adducts Ph2tBuArN/B-FLP(iPr2ArNCO) (4) and Ph2tBuArN/B-FLP-(AdNCO) (5). X-ray crystallography of 4 and 5 reveals sixmembered rings featuring coordination of the isocyanate C= O bond across the N.-.B interaction in frustrated FLP isomer **3'** (Figure 3). The N1–C36 (1.448(3) and 1.4571(19) Å) and B1-O2 (1.473(3) and 1.470(2) Å) distances in 4 and 5, respectively, are quite similar to those found in 1 and 2. Both 4 and 5 possess a slightly puckered six-membered ring as judged by the sum of the internal angles (709.01 and 707.87°, respectively), compared to 720° for a purely planar cycle. NMR spectra reveal that the adduct structures are maintained in solution with formamidate C-H 1 H resonances at δ 7.42 and 6.80 ppm, respectively. ¹⁹F NMR spectra reveal that both isocyanate adducts 4 and 5 possess equivalent B(C₆F₅)₂

Capture of an isocyanide by 3 leads to a five-membered cycle. NMR studies reveal that addition of 2,6-dimethylphenyl isocyanide (Me2ArNC) to 3 results in clean and immediate conversion to the isocyanide adduct Ph2tBuArN/B- $FLP(^{Me2}ArNC)$ (6) that also possesses equivalent $B(C_6F_5)_2$ groups. The X-ray structure of 6 (Figure 3) clearly reveals this adduct as a formal 1,1-addition product of the isocyanide to the frustrated FLP isomer 3'.[27] This FLP adduct possesses N1-C36 and B1-C36 distances of 1.463(3) and 1.656(4) Å

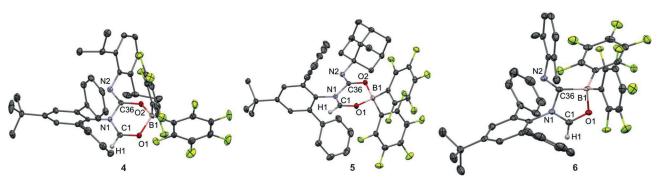
within a planar five-membered ring (sum of internal angles = 539.96°; ideal value = 540°).

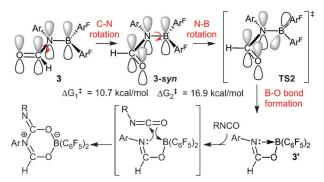
Dissolution of pure crystals of Ph2tBuArN/B-FLP(AdNCO) (5) in [D₆]benzene leads to a small amount of free AdNCO and confused FLP 3 observed by ¹H and ¹⁹F NMR spectroscopies, which we propose proceeds via the short-lived intermediate 3'. At RT (298 K), substrate-bound 5 is in equilibrium $(K_d = 3.8 \times 10^{-4} \text{ m})$ with confused FLP 3 and AdNCO (Scheme 4, top). Variable-temperature NMR studies in [D₆]benzene indicate increased dissociation at higher temperatures; van't Hoff analysis gives $\Delta H = 13.1$ -(4) kcal mol⁻¹ and $\Delta S = 28.6(1.2)$ cal mol⁻¹ K⁻¹ for dissociation of AdNCO from 5 to give 3.

$$\begin{array}{c} \text{Ad} \\ \text{N} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{O} \\$$

Scheme 4. Exchange of substrates at FLP 3 through dissociation of AdNCO from 5.

We became intrigued by the possibility of substrate exchange that could proceed through the "frustrated" intermediate 3' immediately formed upon loss of AdNCO from Ph2tBuArN/B-FLP(AdNCO) (5). Indeed addition of both ^{iPr2}ArNCO and ^{Me2}ArNC to 5 results in the corresponding FLP adducts 4 and 6, respectively (Scheme 4). Addition of 1 equiv Me2ArNC to a solution of 5 in [D₆]benzene results in complete conversion to Ph2tBuArN/B-FLP(Me2ArNC) (6) within 15 h. Addition of excess Me2ArNC (10 or 20 equiv) to 5 gives the same first-order rate constant $k = 5.8(1) \times 10^{-5} \,\mathrm{s}^{-1}$, indicating a dissociative mechanism for the substitution of AdNCO in 5 with Me2ArNC to give 6. On the other hand, replacement of AdNCO with 1 equiv iPr2ArNCO was incomplete after 20 h. Addition of excess iPr2ArNCO (20 or 30 equiv) to 5, however, drives the equilibrium to afford complete conversion to Ph2tBuArN/B-FLP(iPr2ArNCO) (4) in 20 h with the same first-order rate constant $k = 5.7(2) \times$ 10⁻⁵ s⁻¹. Notably, these two rate constants for reaction with




Figure 3. X-ray structures of isocyanate and isocyanide adducts 4-6 through substrate capture by confused FLP 3.

excess ^{iPr2}ArNCO or ^{Me2}ArNC are experimentally indistinguishable, indicating rate limiting loss of AdNCO from **5**. Moreover, the conditions required to achieve complete conversion to **4** or **6** are consistent with the thermodynamic preferences revealed by DFT in Scheme 3. Substitution of ^{Me2}ArNC for ^{iPr2}ArNCO in **4** was similarly observed but was also incomplete, further consistent with the calculated ΔG values in Scheme 3.

In order for the confused FLP **3** to undergo reactivity with substrates, a rearrangement must occur to form the O–B bond observed in all FLP-substrate adducts **4–6**. On the way to rearrangement, the N–B interaction must be weakened; specifically, the N–B bond must rotate so that the N and B substituents are no longer in the same plane. To gain experimental insight into these dynamic processes, we carefully examined variable temperature ¹⁹F NMR spectra of **3** in $[D_8]$ toluene. At RT, **3** displays a pair of diastereotopic B-C₆F₅ groups characteristic of the restricted rotation about the N–B bond due to the dative π interaction between the N lone pair and the B empty p orbital (Scheme 5). Warming the solution

Scheme 5. Mechanism for isomerization from confused FLP **3** to open FLP **3'** and subsequent capture of isocyanate substrate. Energies determined by DFT at 298 K and in fluorobenzene.

results in broadened resonances, and at 105 °C, the *para*-F signals coalesce to give $\Delta G^{\dagger}(378~\mathrm{K})=17.6(3)~\mathrm{kcal\,mol^{-1}}$ for N–B bond rotation. Lineshape analysis gives $\Delta H^{\dagger}=11.0~\mathrm{kcal\,mol^{-1}}$ with $\Delta S^{\dagger}=-17.4~\mathrm{cal\,mol^{-1}}$ ·K corresponding to $\Delta G^{\dagger}(378~\mathrm{K})=17.6~\mathrm{kcal\,mol^{-1}}$. The N–B rotational barrier in 3 is considerably lower than alkyl or arylsubstituted borylamines (ca. 25 kcal mol⁻¹)[^{21,28}] due to competition with the formyl group for the N lone pair. Rather, it is similar to the decreased N–B rotational barriers observed in early transition metal borylamides ($\Delta G^{\dagger}=15.2$ –17.4 kcal mol⁻¹) in which vacant metal d orbitals can compete with B for acceptance of the N lone pair. [^{23–24}]

DFT calculations indicate the presence of two transition states along the reaction pathway that connects confused **3** with frustrated **3**′ ready for substrate capture (Scheme 5 and Figure S14). The C–N bond first rotates to bring the O atom of the formamide to the same side of the C–N bond as the B atom with a low barrier ($\Delta G_1^{\ +} = 10.7 \text{ kcal mol}^{-1}$) to generate **3-syn**. Next, the B–N bond rotates (**TS2**) to prime the empty p orbital of the B atom to accept a pair of electrons from the formamide C=O double bond ($\Delta G_2^{\ +} = 16.9 \text{ kcal mol}^{-1}$), form-

ing the O-B bond present in frustrated 3'. Since the calculated barrier for N-B rotation is higher than that of formamide isomerization determined from VT NMR, N-B rotation is the key step required to interconvert confused 3 with frustrated 3'.

A new class of nitrogen/boron frustrated and confused Lewis pairs results from the hydroboration of bulky arylisocyanates. While hydroboration of smaller isocyanates with HB(C₆F₅)₂ directly leads to N/B FLP(isocyanate) adducts, significantly increasing the isocyanate steric bulk with Ph2tBuArNCO allows for the isolation of the substrate-free FLP 3. Surprisingly, this confused FLP 3 possesses a covalent N-B bond without any direct O-B interaction, despite considerable steric crowding about the N-B bond with bulky N-Ar and B(C₆F₅)₂ groups. Nonetheless, high-level DFT calculations predict this confused isomer 3 to be most stable. Isomerization of confused 3 to the frustrated, O-B bonded isomer 3' allows for typical N/B FLP-type reactivity with isocyanates and isocyanides. Unfortunately, exposure of 3 to common FLP substrates such as H₂ or CO₂ does not lead to clean, facile reactions. In part, this may reflect the kinetic and thermodynamic barriers associated with the isomerization of confused 3 to frustrated 3' required to capture substrates, which leaves room for development of the isocyanate component to lower these barriers. Nonetheless, these studies make clear that FLP-like reactivity may be observed from structural motifs without any obvious frustrated Lewis acid-base interaction.

Acknowledgements

T.H.W. is grateful to the American Chemical Society Petroleum Research Fund (51971-ND3) and the Georgetown Environment Initiative for financial support as well as to the NSF for an X-ray diffractometer (CHE-1337975). S.G. thanks the DFG in the framework of the Leibniz program. T.H.W. gratefully acknowledges Boulder Scientific for a generous gift of $B(C_6F_5)_3$ used to prepare $HB(C_6F_5)_2$.

Keywords: density functional calculations ·

frustrated Lewis pairs \cdot hydroboration \cdot acid-base interactions \cdot sustainable chemistry

How to cite: Angew. Chem. Int. Ed. 2016, 55, 14335–14339 Angew. Chem. 2016, 128, 14547–14551

^[1] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, *Science* 2006, 314, 1124.

^[2] S. J. Geier, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 3476.

^[3] C. F. Jiang, O. Blacque, T. Fox, H. Berke, Organometallics 2011, 30, 2117.

^[4] M. Ullrich, A. J. Lough, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 52.

^[5] D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018.

^[6] D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46; Angew. Chem. 2010, 122, 50.

^[7] D. W. Stephan, G. Erker, Top. Curr. Chem. 2013, 332, 85.

^[8] D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400; Angew. Chem. 2015, 127, 6498.

^[9] D. W. Stephan, G. Erker, *Chem. Sci.* **2014**, *5*, 2625.

Zuschriften

- [10] J. S. J. McCahill, G. C. Welch, D. W. Stephan, Angew. Chem. Int. Ed. 2007, 46, 4968; Angew. Chem. 2007, 119, 5056.
- [11] P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S. Grimme, D. W. Stephan, Chem. Commun. 2007, 5072.
- [12] H. D. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun. 2008, 5966.
- [13] K. Chernichenko, A. Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, *Nat. Chem.* 2013, 5, 718.
- [14] D. W. Stephan, Acc. Chem. Res. 2015, 48, 306.
- [15] T. Mahdi, J. N. del Castillo, D. W. Stephan, Organometallics 2013, 32, 1971.
- [16] M.-A. Légaré, M.-A. Courtemanche, E. Rochette, F.-G. Fontaine, *Science* 2015, 349, 513.
- [17] A. F. G. Maier, S. Tussing, T. Schneider, U. Flörke, Z.-W. Qu, S. Grimme, J. Paradies, *Angew. Chem. Int. Ed.* **2016**, *55*, 12219–12223; *Angew. Chem.* **2016**, *128*, 12407–12411.
- [18] M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 13559.
- [19] D. J. Parks, R. E. v. H. Spence, W. E. Piers, Angew. Chem. Int. Ed. Engl. 1995, 34, 809; Angew. Chem. 1995, 107, 895.
- [20] H. Chen, R. A. Bartlett, M. M. Olmstead, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 1990, 112, 1048.
- [21] K.-A. Østby, A. Haaland, G. Gundersen, Organometallics 2005, 24, 5318.
- [22] R. Thompson, B. L. Tran, S. Ghosh, C. H. Chen, M. Pink, X. F. Gao, P. J. Carroll, M. H. Baik, D. J. Mindiola, *Inorg. Chem.* 2015, 54, 3068.
- [23] T. H. Warren, R. R. Schrock, W. M. Davis, *Organometallics* 1996, 15, 562.

- [24] T. H. Warren, R. R. Schrock, W. M. Davis, *Organometallics* 1998, 17, 308.
- [25] http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, April 4, 2016).
- [26] a) Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; c) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; d) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297; e) F. Eckert, A. Klamt in COSMOtherm, Version C3.0, Release 12.01, COSMOlogic GmbH & Co. KG Leverkusen, Germany, 2012; f) S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 2015, 143, 054107.
- [27] A. J. P. Cardenas, Y. Hasegawa, G. Kehr, T. H. Warren, G. Erker, Coord. Chem. Rev. 2016, 306, 468.
- [28] N. M. D. Brown, F. Davidson, J. W. Wilson, J. Organomet. Chem. 1981, 210, 1.
- [29] Section 5 in the Supporting Information contain crystallographic data for complexes 1-6. CCDC 1504054, 1504055, 1504056, 1504057, 1504058 and 1504059 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Received: September 13, 2016 Published online: October 13, 2016